The Game of Twenty Questions with noisy answers. Applications to Fast face detection, micro-surgical tool tracking and electron microscopy

Graduate Summer School: Computer Vision

July 22 - August 9, 2013

Bruno M. Jedynak

Dept. of Applied Mathematics and Statistics Johns Hopkins University

July 31, 2013

The game of 20 questions

\mathcal{X} is the parameter space $(\{1, \ldots, 1,000,000\},\{A, B\}$, unit interval, unit square, object pose).
$X_{1} \in \mathcal{X}, X_{2} \in \mathcal{X}, \ldots, X_{K} \in \mathcal{X}$ are the parameters, or targets, or object poses
Ask N questions, $0 \leq n \leq N-1$: select $A_{n} \subset \mathcal{X}$.
The answer is $Z_{n}=1_{X_{1} \in A_{n}}+\ldots+1_{X_{K} \in A_{n}}$ is the number of targets within A_{n}.
Z_{n} is not observed
Instead, we observe Y_{n+1}, (a noisy version of Z_{n})

$$
Y_{n+1}=\left\{\begin{array}{cc}
\sim f_{1} & \text { if } Z_{n}=1 \\
\sim f_{0} & \text { if } Z_{n}=0
\end{array}\right.
$$

where f_{0} anf f_{1} are probability distributions.
The goal is to choose N questions such that $\left(X_{1}, \ldots, X_{K}\right)$ can be estimated as accurately as possible after observing the answers.

Past and current research projects (applications)

- Road tracking [1996] (Donald Geman, BJ);
- Face detection [2010], surgical tool tracking [2012], electron microscopy [2013] (BJ, Raphael Sznitman);
- table setting analysis [current] (Donald Geman, Yoruk Erdem, Ehsan Jahangiri, BJ, Laurent Younes);
- Root finding using noisy measurements [current] (Peter Frazier, Shane Henderson, BJ)
- Stochastic simulations: screening [current] (Peter Frazier, BJ)
- Experiments in visual perception [current] (Jonathan Flombaum, Heeyeon Im, BJ)

Road Tracking from Remote Sensing Images

Face detection

$7150 / 577729=0.012$

$16006 / 1000000=0.016$

Tool tracking, electron microscopy

Table setting

Past and current research projects (theory)

- 20 questions as a model for perception [1995] (Donald, Geman, BJ)
- Bayesian optimal policies. Entropy loss. Single target. Noisy answers [2012] (Peter Frazier, Raphael Sznitman, BJ)
- Metric loss functions [current] (Peter Frazier, Shane Henderson, Rolf Waeber, Avner Bar-Hen, BJ)
- Multiple objects. Entropy Loss. [current] (Peter Frazier, Weidong Han, BJ)

Today's talk:

- Specify the mathematical game
- Review a Frequentist result
- Bayesian pont of view with entropy loss
- Play the game
- Probabilistic bisection policy
- Dyadic policy in 1 dimension
- Detecting multiple objects simultaneously
- Application to face detection
- application to tool tracking

References

1. D. Geman and B. Jedynak, "An active testing model for tracking roads from satellite images," IEEE Transactions on Pattern Analysis and Machine Intelligence , 18(1), pp. 1-14, 1996.
2. Raphael Sznitman and Bruno Jedynak, "Active Testing for Face Detection and Localization", IEEE PAMI 32(10), 2010.
3. Bruno Jedynak, Peter L. Frazier and Raphael Sznitman, "Twenty Questions with Noise: Bayes Optimal Policies for Entropy Loss", Journal of Applied Probability, 49(1), March 2012.
4. Sznitman, Raphael; Richa, Rogerio; Taylor, Russell; jedynak, bruno; Hager, Gregory D. "Unified detection and tracking of instruments during retinal microsurgery", IEEE PAMI, 2012 Oct 1
5. R. Sznitman, A. Lucchi, P. I. Frazier, B. Jedynak and P. Fua, "An Optimal Policy for Target Localization with Application to Electron Microscopy", International Conference on Machine Learning, 2013

Unidimensional Binary Symmetric Noise

$X \in[0 ; 1]$ is the parameter of interest. (1D case)
Ask questions: At time $n, 0 \leq n \leq N-1$, select $x_{n}, 0 \leq x_{n} \leq 1$
$Z_{n}=1_{X \leq x_{n}}$ is the "true" answer
Z_{n} is not observed
Instead, we observe Y_{n+1}, a noisy version of Z_{n}

$$
Y_{n+1}= \begin{cases}Z_{n} & \text { with probability } 1-\epsilon \\ 1-Z_{n} & \text { with probability } \epsilon\end{cases}
$$

with $0 \leq \epsilon \leq 1$
Y_{n+1} is Binary and the noise is symmetrical

Frequentist analysis

Choose N questions x_{0}, \ldots, x_{N-1} and propose an estimator \hat{X}_{N} of X in order to minimize

$$
\sup _{X \in[0 ; 1]} E\left|\hat{X}_{N}-X\right|
$$

Valid (or adapted) policy: For each time i, the sample locations x_{i} depends only on the available information at time i. Non-Adaptive policy: Valid policies for which the sample locations x_{i} can be chosen simultaneously.

Frequentist analysis

noseless case $\epsilon=0$

1. restricted to non-adaptive policies,

$$
\sup _{X \in[0 ; 1]} E\left|\hat{X}_{n}-X\right| \leq \frac{1}{2(n+1)}
$$

achieved by choosing x_{0}, \ldots, x_{N-1} regularly spaced over [0; 1]

$$
\left\{\frac{1}{n+1}, \frac{2}{n+1}, \ldots, \frac{n}{n+1}\right\}
$$

2. however,

$$
\sup _{X \in[0 ; 1]} E\left|\hat{X}_{n}-X\right| \leq \frac{1}{2^{n+1}}
$$

achieved by choosing the dichotomy policy which is adaptive.

Frequentist analysis

noisy case $0<\epsilon<1$

$$
\sup _{X \in[0 ; 1]} E\left|\hat{X}_{n}-X\right| \leq 2\left(\frac{1}{2}+\sqrt{\epsilon(1-\epsilon)}\right)^{n / 2}
$$

using the probabilistic bisection policy. [Please wait a few slides :-)]
Exponential error decay behavior
Is this policy optimal for this criterium ?

Ref: Active Learning and Sampling, Chapter 8, Rui Castro and robert Nowak.

Bayesian analysis

X is random, with density p_{0} over $[0 ; 1]$
Consider more general questions of the form $X \in A$? where A is a Lebesgue measurable subset of $[0 ; 1]$
More general answers. f_{0} and f_{1} are point mass functions or densities

$$
Y_{n+1} \sim \begin{cases}f_{1} & \text { if } X \in A_{n} \\ f_{0} & \text { if } X \notin A_{n}\end{cases}
$$

Previously $A_{n}=\left[0 ; x_{n}\right], f_{1}$ is Bernoulli(1- (1) and f_{0} is Bernoulli(ϵ)

Bayes rule

If at time n , the history of answers is
$B_{n}=\left\{Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right\}$, the posterior is p_{n}, the question is " $X \in A_{n}$?" and the answer is $Y_{n+1}=y_{n+1}$ then p_{n+1} is the conditional distribution of X at time $n+1$. Using Bayes rule,

$$
\begin{aligned}
p_{n+1}(x) & =p\left(x \mid Y_{n+1}=y_{n+1}, B_{n}\right) \\
\alpha & P\left(Y_{n+1}=y_{n+1} \mid X=x, B_{n}\right) p\left(x \mid B_{n}\right) \\
\alpha & P\left(Y_{n+1}=y_{n+1} \mid X=x\right) p_{n}(x) \\
\alpha & p_{n}(x) \begin{cases}f_{1}\left(y_{n+1}\right) & \text { if } x \in A_{n} \\
f_{0}\left(y_{n+1}\right) & \text { if } x \notin A_{n}\end{cases}
\end{aligned}
$$

Controlled Markov chain

As questions are asked and answered, the density of X "evolves" becoming p_{1}, p_{2}, \ldots successive posterior densities. At time n,
The state is the density p_{n}.
The control is A_{n}. It affects the transition probability from p_{n} to
p_{n+1}.
The Markov property comes from the fact that the noise is memoryless.
The functional of interest for today is the Shannon Differential Entropy

$$
\begin{array}{r}
\qquad H\left(p_{n}\right)=-\int_{0}^{1} p_{n}(x) \log _{2} p_{n}(x) d x \\
\text { If } p_{n}(x)=\frac{1}{b-a}, a \leq x \leq b, \text { then } 2^{H\left(p_{n}\right)}=b-a
\end{array}
$$

Let's play the game ...

Define the value function as

$$
V(p, n)=\inf _{\pi} E^{\pi}\left[H\left(p_{N}\right) \mid p_{n}=p\right], n=0, \ldots, N
$$

where the infimum is taken over all valid policies π.
Let's play

Bellman optimality principle

Define the value function as

$$
V(p, n)=\inf _{\pi} E^{\pi}\left[H\left(p_{N}\right) \mid p_{n}=p\right], n=0, \ldots, N
$$

where the infimum is taken over all valid policies π.
Principe of optimality: "An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision." Richard Bellman.
Bellman recursion

$$
V(p, n)=\inf _{A_{n}} E\left[V\left(p_{n+1}, n+1\right) \mid A_{n}, p_{n}=p\right], n=0, \ldots, N
$$

and a policy which chooses an x_{n} attaining the minimum above is optimal.

Greedy policy

Consider minimizing the value function at time $\mathrm{N}-1$.

$$
\begin{aligned}
V(p, N-1) & =\inf _{A_{N-1}} E\left[V\left(p_{N}, N\right) \mid A_{N-1}, p_{N-1}=p\right] \\
& \left.=\inf _{A_{N-1}} E\left[H\left(p_{N}\right)\right) \mid A_{N-1}, p_{N-1}=p\right] \\
& =\inf _{A_{N-1}}\left(H\left(p_{N-1}\right)-I\left(X, Y_{N} \mid A_{N-1}, p_{N-1}\right)\right. \\
& =H\left(p_{N-1}\right)-\sup _{A_{N-1}} I\left(X, Y_{N} \mid A_{N-1}, p_{N-1}\right)
\end{aligned}
$$

where $I\left(X, Y_{N} \mid A_{N-1}, p_{N-1}\right)$ denotes the Mutual Information between X and Y_{N} when the density of X is p_{N-1} and the control is A_{N-1}

Computation of the Mutual Information

notate $p(A)=\int_{A} p(x) d x$ and $u=p_{N-1}\left(A_{N-1}\right)$

$$
\begin{gathered}
I\left(X, Y_{N} \mid A_{N-1}, p_{N-1}\right)=H\left(Y_{N} \mid A_{N-1}, p_{N-1}\right)-H\left(Y_{N} \mid X, A_{N-1}, p_{N-1}\right) \\
=H\left(u f_{1}+(1-u) f_{0}\right)-u H\left(f_{1}\right)-(1-u) H\left(f_{0}\right) \\
=\phi(u)
\end{gathered}
$$

ϕ is concave,$\phi(0)=\phi(1)=0$ and
The channel capacity is

$$
C=C\left(f_{0}, f_{1}\right)=\max _{u} \phi(u)
$$

Optimal policy

Theorem: The policy for which A_{n} is such that

$$
p_{n}\left(A_{n}\right)=u^{*}=\arg \max _{u} \phi(u)
$$

is optimal and the value function is

$$
V\left(p_{n}, n\right)=H\left(p_{n}\right)-(N-n) C
$$

Proof: check that this policy verifies Bellman's recursion. The main point is that the expected gain in Entropy C realized at each step is independent of the state p_{n}
When $\phi(u)=\phi(1-u)$ then $u^{*}=1 / 2$
When moreover $A_{n}=\left[0 ; x_{n}\right], x_{n}$ is the median of p_{n}. This policy is the probabilistic bisection policy used in the frequentist analysis

Simulation of the probabilistic bisection policy

The process $H\left(p_{n}\right)$ for the binary symmetric channel. p_{0} is Uniform([0; 1]). Left: $\epsilon=0.2 C=0.28$ Right: $\epsilon=0.4 C=0.03$

The Diadic policy

| $\mathrm{A}_{2,0}$ | $\mathrm{~A}_{1,1}$ | $\mathrm{~A}_{2,2}$ | $\mathrm{~A}_{2,3}$ | $\mathrm{~A}_{2,4}$ | $\mathrm{~A}_{2,5}$ | $\mathrm{~A}_{2,6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | $\mathrm{~A}_{2,7} \quad n=2$

Illustration of the dyadic policy when p_{0} is uniform on $[0,1]$ and $u^{*}=5 / 8$. The prior is displayed on top. Below, the sets $A_{n, k}$ are illustrated for $n=0,1,2$. Each question A_{n} is the union of the dark grey subsets $A_{n, k}$ for that value of n.

Simulation of the dyadic policy

The process $H\left(p_{n}\right) p_{0}$ is Uniform($\left.[0 ; 1]\right)$. Left: Binary symmetric channel $\epsilon=0.2 C=0.28$ Right: Normal channel $C=0.47$

Properties of the dyadic policy

$$
\begin{equation*}
H\left(p_{n+1}\right)-H\left(p_{n}\right)=-D\left(B\left(\frac{u^{*} f_{1}\left(Y_{n+1}\right)}{u^{*} f_{1}\left(Y_{n+1}\right)+\left(1-u^{*}\right) f_{0}\left(Y_{n+1}\right)}\right), B\left(u^{*}\right)\right) \tag{1}
\end{equation*}
$$

where Y_{n} is a sequence of i.i.d. random variables with pmf or density the mixture $u^{*} f_{1}+\left(1-u^{*}\right) f_{0}$

$$
\begin{equation*}
\frac{H\left(p_{n}\right)}{n} \rightarrow-C \text { a.s. } \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{H\left(p_{n}\right)+n C}{\sqrt{n}} \rightarrow N\left(0, \sigma^{2}\right) \text { in distribution, } \tag{3}
\end{equation*}
$$

Playing in 2 dimensions

$X^{*}=\left(X_{1}^{*}, X_{2}^{*}\right)$. Pitfall with minimzing $E\left[H\left(p_{N}\right)\right]$
Ex: $X^{*} \sim U\left(\left[0 ; s_{1}\right] \times\left[0 ; s_{2}\right]\right)$, then $H\left(X^{*}\right)=\log \left(s_{1}\right)+\log \left(s_{2}\right)$ which can be arbitrarily small with, say, $s_{1}=1$. Instead, notate $H_{1}\left(p_{N}\right)=H\left(\int p_{N}\left(., u_{2}\right) d u_{2}\right)$, similarly for $H_{2}\left(p_{N}\right)$

$$
\inf _{\pi} E^{\pi}\left[\max \left(H_{1}\left(p_{N}\right), H_{2}\left(p_{N}\right)\right) \mid p_{0}=p\right]
$$

Optimal policy seems out of reach. Instead,

$$
V(p)=\inf f_{N \rightarrow+\infty} \liminf _{N \rightarrow \infty} \frac{1}{N} E^{\pi}\left[\max \left(H_{1}\left(p_{N}\right), H_{2}\left(p_{N}\right)\right) \mid p_{0}=p\right]
$$

Playing in 2 dimensions with questions on the marginals

For further simplification, we assume that questions concern only one coordinate. That is, the sets queried are either of type $1, A_{n}=B \times \mathbb{R}$ where B is a finite union of intervals of \mathbb{R}, or alternatively of type $2, A_{n}=\mathbb{R} \times B$. In each case, we assume that the response passes through a memoryless noisy channel with densities $f_{0}^{(1)}$ and $f_{1}^{(1)}$ for questions of type 1 , and $f_{0}^{(2)}$ and $f_{1}^{(2)}$ for questions of type 2 . Let C_{1} and C_{2} be the channel capacities for questions of type 1 and 2 respectively. We also assume that p_{0} is a product of its marginals. This guarantees that p_{n} for all $n>0$ remains a product of its marginals and that only one marginal distribution is modified at each point in time.

Playing in 2 dimensions with questions on the marginals

The following policy:
At step n, choose the type of question at random, choosing type 1 with probability $\frac{C_{2}}{C_{1}+C_{2}}$ and type 2 with probability $\frac{C_{1}}{C_{1}+C_{2}}$. Then, in the dimension chosen, choose the subset to be queried according to the 1-dimensional dyadic policy. Is optimal. Moreover, it verifies a CLT:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}[\\
\frac{\left.\max \left(H_{1}\left(p_{n}\right), H_{2}\left(p_{n}\right)\right)+\frac{C_{1} C_{2}}{C_{1}+C_{2}} n\right]={ }^{D}}{} \\
\frac{\max \left(\sigma_{1} \sqrt{C_{2}} z_{1}, \sigma_{2} \sqrt{C_{1}} z_{2}\right)}{\sqrt{C_{1}+C_{2}}}
\end{gathered}
$$

Here, Z_{1} and Z_{2} are independent standard normal random variables, and σ_{i}^{2} is the variance of the increment of $H_{i}\left(p_{n+1}\right)-H_{i}\left(p_{n}\right)$ when measuring type i

Character localization

Figure : From left to right: Example of an image containing the character "T". Examples of subset-based questions. In each image, we show the queried region by the gray area.

Character localization

Figure : Pixel Reordering: (top) Example images from the test set. (bottom) Corresponding ℓ-images. Dark regions indicate pixels more likely to contain the character, while light regions are less likely.

Character localization

Figure : Noise-free evaluations and convergence in entropy. (a) The distribution of number of noise-free evaluations needed to locate the target character. (b) Plot of $H\left(p_{n}\right) / n$ as a function of n. Each line corresponds to one image, with $H\left(p_{n}\right) / n$ plotted over $n=1, \ldots, 16$.

Character localization

Figure : Central Limit Theorem: (a) Distribution of $\frac{H\left(p_{n}\right)-\left(H\left(p_{0}\right)-n C\right)}{\sqrt{n}}$, with mean -0.01 . The distribution is close to Gaussian as the Q-Q plot (b) shows.

Detecting two objects

Assume two targets $X=\left\{X_{1}, X_{2}\right\}$, are independent. We also assume that they have the same prior distribution, notated p_{0}. For specificity, let's assume that both X_{1} and X_{2} belong to the interval $[0 ; 1]$. A series of N questions are asked to locate X_{1}, X_{2}. The first question is indexed by the set A_{0}. The first answer is

$$
Y_{1}=1_{A_{0}}\left(X_{1}\right)+1_{A_{0}}\left(X_{2}\right)
$$

The $n^{\text {th }}$ question is indexed by A_{n-1} and has answer

$$
Y_{n}=1_{A_{n-1}}\left(X_{1}\right)+1_{A_{n-1}}\left(X_{2}\right)
$$

Policies

We define the value function in the usual way

$$
\begin{equation*}
V(p, n)=\inf _{\pi} E^{\pi}\left[H\left(p_{N}\right) \mid p_{n}=p\right], n=0, \ldots, N \tag{4}
\end{equation*}
$$

where p_{n} is the posterior distribution over $\left\{X_{1}, X_{2}\right\}$ after observing the answers to the first n questions. We also define the greedy policy π_{G}. It is a sequential policy which we define iteratively.

$$
\begin{equation*}
A_{0}=\arg \min _{A} E\left[H\left(p_{1}\right) \mid p_{0}, A_{0}=A\right] \tag{5}
\end{equation*}
$$

If the first n questions are indexed by A_{0}, \ldots, A_{n-1} and the answers are Y_{1}, \ldots, Y_{n}, then A_{n} is chosen such that

$$
\begin{equation*}
A_{n}=\arg \min _{A} E\left[H\left(p_{n+1}\right) \mid p_{n}, A_{n}=A\right] \tag{6}
\end{equation*}
$$

Finally, We note π_{D} the diadic policy.

Result for the noiseless case

$$
\begin{aligned}
H(p)-\log _{2}(3) N & <V(p, 0)=\inf _{\pi} E^{\pi}\left[H\left(p_{N}\right) \mid p_{0}=p\right] \\
V(p, 0) & \leq E^{\pi_{G}}\left[H\left(p_{N}\right) \mid p_{0}=p\right] \\
E^{\pi_{G}}\left[H\left(p_{N}\right) \mid p_{0}=p\right] & \leq E^{\pi_{D}}\left[H\left(p_{N}\right) \mid p_{0}=p\right] \\
E^{\pi_{D}}\left[H\left(p_{N}\right) \mid p_{0}=p\right] & =H(p)-1.5 N
\end{aligned}
$$

Interpretation: Learning 20 bits from each object requires only about $\frac{40}{1.5} \sim 27$ questions, compared to 40 if we were to learn first about X_{1} and then about X_{2}.

Multiple objects. No noise.

From Idealistic Setting to Computer Vision

- Finite number of identifiable poses (i.e finite number of images)
- Finite set of questions
- Very strong Classifiers available (i.e. Oracles)
- Only available when evaluating very small set of poses (e.g. single pixel).
- Can create weak classifiers (i.e. providing noisy answers for a collection of poses)

Face Localization and Detection

Let us find the center of a face in an image ${ }^{1}$:

- Let $X^{*}=\left(X_{1}^{*}, X_{2}^{*}\right)$ be a discrete random variable that defines the face center.
- Let $p_{0} \sim U([0, M] \times[0, N])$

[^0]
Search Space Decomposition

- Let Λ be a regular decomposition of the pose space into quadrants, such that

$$
\Lambda=\left\{\Lambda_{i, j}, i=0, \ldots, d, j=0, \ldots, 4^{i-1}-1\right\}
$$

$\Lambda_{3,162}$

Face Questions

- $\mathcal{K}=29$ questions available at each node

Search space queried: $\Lambda_{i, j}$

Proportion of

 edges in region

Proportion of oriented edges in region

Viola Jones face detector

Active Testing Algorithm

1. Initialize node to query: $i=0, j=0$
2. Initialize question type: $k=0$
3. Repeat
3.1 Test: $y=X_{i, j}^{k}$
3.2 Update $p_{t+1}(\cdot)$ from y and $p_{t}(\cdot)$
3.3 Choose next Question:

$$
\{i, j, k\}=\underset{i, j, k}{\arg \max } \operatorname{MI}(i, j, k)
$$

4. Until $H\left(p_{t+1}\right)<\epsilon$ or a fixed number of iterations.

MIT+CMU Face Dataset:

$16006 / 1000000=0.016$

$13391 / 307200=0.043$
$32324 / 881600=0.036$

$5905 / 426429=0.013$

$18167 / 372960=0.048$

MIT+CMU: Performance and Iterations

Application:
 Instrument detection and Tracking in Retinal Microsurgery

Application:

Instrument detection and Tracking in Retinal Microsurgery

Light Pipe

Active Testing for Retinal Tool Detection

Let us find the tool pose in an image ${ }^{1}$:

- Let $X^{*}=\left(X_{1}^{*}, X_{2}^{*}, X_{3}^{*}\right)$ be a discrete random variable that defines the tool pose.
- Let the space of possible tool locations be:

$$
\mathcal{S}=[0, P] \times[-\pi / 2, \pi / 2] \times[\delta, L]
$$

- Let $p_{0} \sim U(\mathcal{S} \cup\{\square\})$

[^1]
Active Testing for Retinal Tool Detection

Let us find the tool pose in an image ${ }^{1}$:

- Let $X^{*}=\left(X_{1}^{*}, X_{2}^{*}, X_{3}^{*}\right)$ be a discrete random variable that defines the tool pose.
- Let the space of possible tool locations be:

$$
\mathcal{S}=[0, P] \times[-\pi / 2, \pi / 2] \times[\delta, L]
$$

- Let $p_{0} \sim U(\mathcal{S} \cup\{\square\})$
- More complicated density: need a way to organize the search space for efficiency.

[^2]
Search Space Decomposition

- Let \wedge be a regular decomposition of the pose space, such that

$$
\Lambda=\left\{\Lambda_{i, j}, i=0, \ldots, d, j=0, \ldots, 2^{i-1}-1\right\}
$$

- Will represent p_{n} via \wedge.

Tool Questions

- At each node $\Lambda_{i, j}$, can evaluate a question type: $k=1, \ldots, \mathcal{K}$

Tool Questions

- At each node $\Lambda_{i, j}$, can evaluate a question type: $k=1, \ldots, \mathcal{K}$
- A question $X_{i, j}^{k}$ asks: "is $X^{*} \in \Lambda_{i, j}$ " by computing a function k of the image:

$$
X_{i, j}^{k}: I_{\Lambda_{i, j}} \mapsto R
$$

Tool Questions

- At each node $\Lambda_{i, j}$, can evaluate a question type: $k=1, \ldots, \mathcal{K}$
- A question $X_{i, j}^{k}$ asks: "is $X^{*} \in \Lambda_{i, j}$ " by computing a function k of the image:

$$
X_{i, j}^{k}: I_{\Lambda_{i, j}} \mapsto R
$$

- Answer $Y_{i, j}^{k}$ is random,

$$
Y_{i, j}^{k}= \begin{cases}f_{1}(\cdot ; i, j) & \text { if } X^{*} \in \Lambda_{i, j} \\ f_{0}(\cdot ; i, j) & \text { if } X^{*} \notin \Lambda_{i, j}\end{cases}
$$

$\left(f_{1}, f_{0}\right)$ are estimated from labeled training data.

Noisy Tool Questions:

Noisy Tool Questions:

Noisy Tool Questions:

Noisy and Oracle Tool Question:

Active Testing Algorithm

1. Initialize node to query: $i=0, j=0$
2. Initialize question type: $k=0$
3. Repeat
3.1 Test: $y=X_{i, j}^{k}$
3.2 Update $p_{t+1}(\cdot)$ from y and $p_{t}(\cdot)$
3.3 Choose next Question:

$$
\{i, j, k\}=\underset{i, j, k}{\arg \max } \operatorname{MI}(i, j, k)
$$

4. Until $H\left(p_{t+1}\right)<\epsilon$ or a fixed number of iterations.

Tool Tracking by Active Testing Filtering

- Given an image sequence, $\mathcal{I}=\left(I^{1}, \ldots, I^{T}\right)$ and a tool dynamics model $P\left(X_{t}^{*} \mid X_{t-1}^{*}\right)$, we can perform Bayesian Filtering:

1. Initialize: $p_{0}\left(X^{*}\right)$
2. Repeat
2.1 $P_{t}\left(X^{*} \mid \mathcal{I}^{t-1}\right)=\int P\left(X_{t}^{*} \mid X_{t-1}^{*}\right) p_{t-1}\left(X^{*}\right) d X^{t-1}$
$2.2 P_{t}\left(X^{*} \mid \mathcal{I}^{t}\right)=\operatorname{ActiveTesting}\left(I^{t}, P_{t}\left(X^{*} \mid \mathcal{I}^{t-1}\right)\right)$

conclusion

The "20 questions with noise" model offers a framework for "machine perception". It is amenable to mathematical analysis through the use of information theory, control theory and probabilities.

[^0]: ${ }^{1}$ Sznitman, Jedynak. Active Testing for face localization and detection. PAMI, 2010.

[^1]: ${ }^{1}$ Sznitman et al. Unified Detection and Tracking in Retinal Microsurgery. MICCAt, 2011.

[^2]: ${ }^{1}$ Sznitman et al. Unified Detection and Tracking in Retinal Microsurgery. MICCAt, 2011.

